A BME kutatói megfejtették, hogyan kapcsolnak a szupravezető tranzisztorok
Bár a számítástechnika szédületes fejlődésen ment keresztül az elmúlt évtizedekben, az áramköri elemek további jelentős méretcsökkentése fizikai korlátok miatt nem lehetséges.

 

Ezért a tudósok olyan új elveken működő számítástechnikai eszközök létrehozásán dolgoznak, mint az elektron belső mágneses momentumát használó spintronkai eszközök, vagy a kvantummechanika elvein alapuló kvantumszámítógépek. A kvantumszámítógépek alap építőegységei a kvantumbitek, amelyeket gyakran szupravezető áramkörök segítségével hoznak létre. (Ezek kutatásával a BME-n is foglalkoznak – kísérleti és elméleti szempontból is – a Kvantuminformatikai Nemzeti Laboratórium programja keretében.) Az ezekben tárolt információ könnyen el tud veszni, így a terület nagy kihívása olyan robusztus rendszer építése, amely védett az információvesztéssel szemben. Erre az úgynevezett felületi kód a megoldás, amely a kvantumbitek folyamatos, gyors monitorozását igényli, amihez pedig on-chip célhardverek ideálisak.

 

Makk Péter, a Fizikai Intézet docense | Fotó: BME

 

A szupravezető áramkörök rendkívül ígéretesek ilyen célra, hiszen a kvantumcsipek mínusz 270 Celsius-fokon kiválóan működnek és a hagyományos szilíciumalapú CMOS technológiánál lényegesen gyorsabb működési sebességgel, valamint csökkent hőterheléssel kecsegtetnek. Szupravezető áramkörökben a szupravezetés ki- és bekapcsolása jelenti a két logikai állapotot (nulla és nem nulla), azonban sokáig csak mágneses terekkel tudták átkapcsolni. Pár éve olasz kutatók bemutatták, hogy egy fémvezetékben a szupravezető állapot egy közel helyezett kapuelektróda segítségével ki- és bekapcsolható, azaz egy hagyományos tranzisztor elve szerint, kapufeszültséggel működtethető.  A felfedezés nagy feltűnést keltett, mivel a fizikai elméletek keretében a jelenség nem értelmezhető.

 

A BME kutatói megfejtették, hogyan kapcsolnak a szupravezető tranzisztorok | Fotó: BME

 

Az olasz kutatók létrehoztak egy nemzetközi hálózatot, melybe a Műegyetem kvantumelektronika csoportját is meghívták, hogy a jelenség fizikai hátterét megértsék, illetve az alkalmazhatóságát vizsgálják. E konzorciumban Csonka Szabolcs és Makk Péter, a Fizikai Intézet két docense vezetésével sikerült most a BME kutatóinak megfejteni és bebizonyítani, hogy mi a jelenség magyarázata.

„A szupravezetőn átfolyó elektronáramlás zaját, fluktuációját vizsgáltuk. Megmutattuk, hogy kapcsolat van a vezetékben folyó áram fluktuációja és kapuelektródából kilépő elektronok fluktuációja közt, és hogy fontos szerepet játszanak a minta felületén létrejövő rácsrezgések” – magyarázta Csonka Szabolcs, a Szupravezető Nanoelektronika Lendület-kutatócsoport vezetője.

A tanulmány a rangos Nature Communications folyóiratban jelent meg. A tanulmány első szerzője, Tosson Elalaily nemrég szerzett doktori fokozatot a BME Fizikai tudományok doktori iskolájában. A mérések egy finn és dán kutatócsoporttal közösen készültek. A kutatások a Kvantuminformatikai Nemzeti Laboratórium keretében most azt vizsgálják, milyen gyorsan működhetnek ezek a kapcsolók, és a csoport benyújtott egy szabadalmat logikai áramkörök létrehozásának tervéről. A területről a napokban jelent meg egy összefoglaló cikk is a kutatócsoport tagjainak közreműködésével.

„Ez egyelőre egy alapkutatás, de lehetséges, hogy az effektus később hasznosítható lesz, hiszen az általunk vizsgált áramkör egy kapcsoló szerepét töltheti be kvantumszámítógép-architektúrákban. Ha ennek a működése nincs negatív hatással a kvantumbitek élettartamára, akkor pár éven belül bevethető lehet” – mondta a bme.hu kérdésére Makk Péter, megjegyezve, hogy akadnak még fontos tisztázandó kérdések, például az áramkörök sebessége. „Ha jól működnek, akkor a demóverziók 5-10 év múlva jöhetnek létre, hosszú távon pedig leginkább szuperszámítógépek alkatrészeként lehet szerepük” – tette hozzá.

 

Kompakt kialakítás, még nagyobb pontosság - Az új MFR 012 higrosztát a STEGO-tól
A STEGO Group bemutatja a bevált MFR 012 mechanikus páratartalom-szabályozó továbbfejlesztett változatát. Ezt a higrosztátot kifejezetten vezérlőszekrényekhez és elektromos elosztószekrényekhez tervezték, ahol az optimalizált mérési technológiának köszönhetően pontosabb páratartalom-érzékelést biztosít, így megbízható védelmet nyújt a kondenzáció okozta meghibásodásokkal szemben.
Logisztikai Évkönyv: már várják az idei szerzők jelentkezését
Idén ismét érkezik a Logisztikai Évkönyv legújabb száma, amely már több évtizede támogatja az utánpótlás-nevelést is. A 31. kiadványban továbbra is ingyenes publikálási lehetőséget biztosít a Magyar Logisztikai Egyesület (MLE).
Új korszak az innovációban: mesterséges intelligencia a fókuszban
A Bosch szakértői az MI aktuális ipari trendjeibe és alkalmazásának változatos lehetőségeibe engedtek betekintést a budapesti AI Symposiumon.
Munkába állt az első falazórobot
Magyarországra is megérkezett a Wienerberger új falazórobotja, amely teljes kőművescsapatok munkáját láthatja el az építkezéseken. Az innovatív technológiai fejlesztés gyorsan, tökéletes pontossággal dolgozik, és megoldást kínál az építőipart sújtó jelentős munkaerőhiányra.
VARINEX 3D élmény – Lépjen be a digitális gyártás világába és fedezze fel a 3D technológiák jövőjét!
Ha Ön a jövő gyártástechnológiai megoldásaira kíváncsi, és szeretné felfedezni, hogyan érhet el versenyelőnyt a legmodernebb 3D szkennelési és 3D nyomtatási megoldásokkal, akkor ezt az eseményt nem hagyhatja ki! Ismerje meg a legújabb ipari 3D fém- és polimernyomtatók képességeit, és fedezze fel, hogyan segítenek a gyorsabb és költséghatékonyabb gyártási folyamatok elérésében!